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Abstract—Let H(Xt) be the differential entropy of an n-
dimensional random vector Xt introduced by Costa. Cheng and
Geng conjectured that C1(m,n) : (−1)m+1(dm/dmt)H(Xt) ≥ 0.
McKean conjectured that C2(m,n) : (−1)m+1(dm/dmt)H(Xt) ≥
(−1)m+1(dm/dmt)H(XGt). McKean’s conjecture was only con-
sidered in the univariate case before: C2(1, 1) and C2(2, 1)
were proved by McKean and C2(i, 1), i = 3, 4, 5 were proved
by Zhang-Anantharam-Geng under the log-concave condition.
In this paper, we prove C2(1, n), C2(2, n) and observe that
McKean’s conjecture might not be true for n > 1 and
m > 2. We further propose a weaker conjecture C3(m,n) :
(−1)m+1(dm/dmt)H(Xt) ≥ (−1)m+1 1

n
(dm/dmt)H(XGt) and

prove C3(3, 2), C3(3, 3), C3(3, 4) under the log-concave condition.
A systematic procedure to prove Cl(m,n) is proposed and the
results mentioned above are proved using this procedure.

I. INTRODUCTION

Shannon’s entropy power inequality (EPI) is one of the most
important information inequalities [1], which has many proofs,
generalizations, and applications [2]–[10]. In particular, Costa
presented a stronger version of the EPI [11].

Let X be an n-dimensional random vector with probability
density p(x). For t > 0, define Xt ≜ X + Zt, where Zt ∼
Nn(0, tI) is independent of X . Let pt(xt) be the probability
density of Xt [19]. Costa’s differential entropy is defined to
be

H(Xt) = −
∫
Rn

pt(xt) log pt(xt)dxt. (1)

Costa [11] proved that the entropy power of Xt satisfies
(d/dt)N(Xt) ≥ 0 and (d2/d2t)N(Xt) ≤ 0. Several new
proofs and generalizations for Costa’s EPI were given [12],
[15], [16]. Cheng and Geng further proposed a conjecture [14]:

Conjecture 1. H(Xt) is completely monotone in t, that is,
C1(m,n) : (−1)m+1(dm/dmt)H(Xt) ≥ 0.
Costa’s EPI implies C1(1, n) and C1(2, n) [11], Cheng-Geng

proved C1(3, 1) and C1(4, 1) [14]. In [18], C1(3, 2), C1(3, 3),
C1(3, 4) were proved with a systematic procedure.

Let XG ∼ Nn(µ, σ
2I) be an n-dimensional Gaussian

random vector and XGt ≜ XG+Zt. McKean [17] proved that
XGt achieves the minimum of (d/dt)H(Xt) and −(d2/d2t)
H(Xt) subject to Var(Xt) = σ2 + t, and conjectured

Conjecture 2. Subject to Var(Xt) = σ2 + t, we have
C2(m,n) : (−1)m+1(dm/dmt)H(Xt) ≥ (−1)m+1(dm/dmt)H(XGt).

McKean proved C2(1, 1) and C2(2, 1) [17]. Zhang-
Anantharam-Geng [13] proved C2(3, 1), C2(4, 1), and C2(5, 1)
if the probability density function of Xt is log-concave.

In this paper, we verified that C2(3, n), n > 1 could not be
proved by our procedure. So we conjecture that C2(3, n), n > 1
may not be true and propose

Conjecture 3. Subject to Var(Xt) = σ2 + t, we have
C3(m,n) : (−1)m+1(dm/dmt)H(Xt) ≥ (−1)m+1 1

n (dm/dmt)H(XGt).

Conjecture 2 implies Conjecture 3 and Conjecture 3 implies
Conjecture 1, since H(XGt) ≥ 0 [13].

In this paper, we propose a systematic and effective pro-
cedure to prove Cs(m,n), which consists of three main in-
gredients. First, a systematic method is proposed to compute
constraints Ri, i = 1, . . . , N1 satisfied by pt(xt) and its
derivatives. The condition that pt is log-concave can also be
reduced to a set of constraints Rj , j = 1, . . . , N2. Second,
proof for Cs(m,n) is reduced to the following problem

∃pi ∈ R and Qj s.t. (E −
N1∑
i=1

piRi −
N2∑
j=1

QjRj = S) (2)

where Qj is a polynomial in pt and its derivatives such that
Qj ≥ 0 and S is a sum of squares (SOS). Third, problem (2)
can be solved with the semidefinite programming (SDP) [20],
[21]. There exists no guarantee that the procedure will generate
a proof, but when succeeds, it gives a strict proof for Cs(m,n).

Using the above procedure, we first prove C2(1, n), C2(2, n).
Then we prove C3(3, 2), C3(3, 3) and C3(3, 4) under the con-
dition that pt is log-concave. C2(3, 2), C2(3, 3) and C2(3, 4)
cannot be proved with the above procedure even if pt is log-
concave, which motivates us to propose Conjecture 3.

C2(3, 1) C3(3, 2) C3(3, 3) C3(3, 4) C2(2, n)
Vars 3 14 38 38 6
N1 6 63 512 512 8
N2 0 0 6 6 0
Time 0.18 0.53 9.00 9.02 0.32

TABLE I
DATA IN COMPUTING THE SOS WITH SDP

In Table I, we give the data for computing (2), where Vars
is the number of variables (seen in Procedure 2.6), and Time
is the running time in seconds collected on a desktop PC with
a 3.40GHz CPU.

The procedure is inspired by the work [11]–[14], and uses
basic ideas introduced therein. In particular, our approach can
be basically considered as a generalization of [13] from the
univariate case to the multivariate case and as a generalization
of [18] by adding the log-concave constraints. We further
remark that it is not straightforward to extend the method
from the univariate case to the multivariate case which makes
the computational complexity increase dramatically. So as our
method, it is necessary to combine symbolic computation
and semidefinite programming to reduce the complexity. Also,
compared to [13], the log-concave constraints considered in this
paper are more general, and using SOS in this paper gives an
explicit proof.
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II. PROOF PROCEDURE

In this section, we give a general procedure to prove
Cs(m,n) for specific values of s,m, n.

A. Notations
Let [n] = {1, . . . , n}, [n]0 = {0, 1, . . . , n}, and xt =

[x1,t, . . . , xn,t]. We use pt to denote pt(xt) and denote

Pn = {
∂hpt

∂h1x1,t · · · ∂hnxn,t
: h =

n∑
i=1

hi, hi ∈ N}

and R[Pn] to be the set of polynomials in Pn. For v ∈ Pn,
let ord(v) be the order of v. For a monomial

∏r
i=1 v

di
i with

vi ∈ Pn, its degree, order, and total order are defined to be∑r
i=1 di, maxri=1 ord(vi), and

∑r
i=1 di · ord(vi), respectively.

A polynomial in R[Pn] is called a kth-order differential form,
if all its monomials have degree k and total order k. Let Mk,n

be the set of all monomials with degree k and total order k.
Then the set of kth-order differential forms is an R-linear vector
space generated by Mk,n, which is denoted as SpanR(Mk,n).

We will use Gaussian elimination in SpanR(Mk,n) by treat-
ing the monomials as bases. We always use the lexicographic
order for the monomials as defined in [19].

B. The proof procedure for Cs(m,n)

The proof procedure consists of four steps.
In step 1, we reduce the proof of Cs(m,n) into the proof

of an integral inequality, as shown by the following lemma,
whose proof will be given in section II-C.

Lemma 2.1: Proof of Cs(m,n), s = 1, 2, 3 can be reduced
to show ∫

Rn
Es,m,n/p

2m−1
t dxt ≥ 0 (3)

where Es,m,n =
∑n

a1=1 · · ·
∑n

am=1 Es,m,n,am
, am =

(a1, . . . , am), Es,m,n,am
is a 2mth-order differential form in

R[Pm,n], and

Pm,n = {
∂hpt

∂h1xa1,t · · · ∂hmxam,t

: h ∈ [2m − 1]0; ai ∈ [n], i ∈ [m]}. (4)

In step 2, we compute the constraints satisfied by pt. We
consider two types of constraints: integral constraints and
log-concave constraints which will be given in Lemmas 2.3
and 2.5, respectively. Since Es,m,n in (3) is a 2mth-order
differential form, we only consider constraints which are 2mth-
order differential forms.

Definition 2.2: An mth-order integral constraint is a 2mth-
order differential form R in R[Pn] s.t.

∫
Rn

R
p2m−1
t

dxt = 0.
Lemma 2.3 ( [18]): There is a method to compute the mth-

order integral constraints Cm,n = {Ri, i = 1, . . . , N1}.
A function f : Rn → R is called log-concave if log f is a

concave function. In this paper, by the log-concave condition,
we mean that the density function pt is log-concave.

Definition 2.4: An mth-order log-concave constraint is a
2mth-order differential form R in R[Pn] such that R ≥ 0
under the log-concave condition.

The following lemma computes the log-concave constraints,
whose proof is given in section II-D.

Lemma 2.5: Let H(pt) ∈ R[Pn]
n×n be the Hessian matrix

of pt, ∇pt = ( ∂pt

∂x1,t
, . . . , ∂pt

∂xn,t
),

L(pt) ≜ ptH(pt)−∇T pt∇pt, (5)

and △k,l, l = 1, . . . , Lk the kth-order principle minors of
L(pt). Then the mth-order log-concave constraints are

Cm,n = {
l∏

i=1

(−1)ki△ki,liTk1,...,kl
|

l∑
i=1

ki ≤ m} (6)

where Tk1,...,kl
∈ SpanR(M2m−2

∑l
i=1 ki,n

) and Tk1,...,kl
≥ 0.

For convenience, denote

Cm,n = {Pj , j = 1, . . . , N2}, (7)

where Pj represents
∏l

i=1(−1)ki△ki,li in (6), which is a
(2

∑l
i=1 ki)th-order log-concave constraint by Lemma 2.5.

In step 3, we give a procedure to write Es,m,n as an SOS,
detail of which will be given in section II-E.

Procedure 2.6: For Es,m,n in Lemma 2.1, Cm,n = {Ri, i =
1, . . . , N1} in Lemma 2.3, and Cm,n = {Pj , j = 1, . . . , N2}
in Lemma 2.5, the procedure computes ei ∈ R and Qj ∈
SpanR(M2m−degPj ,n) such that

Es,m,n −
N1∑
i=1

eiRi −
N2∑
j=1

PjQj = S and (8)

Qj ≥ 0, j = 1, . . . , N2 (9)

where S is an SOS. If the log-concave condition is not needed,
we may set Qj = 0 for all j.

To summarize, we have
Theorem 2.7: If Procedure 2.6 finds (8) and (9) for certain

s,m, n, then Cs(m,n) is true.
Proof: By Lemma 2.1, we have a proof for Cs(m,n):

∫
R

Et,m,n

p
2m−1
t

dxt
(8)
=

∫
R

∑N1
i=1

eiRi+
∑N2

j=1
PjQj+S

p
2m−1
t

dxt

S1
=

∫
R

∑N2
j=1

PjQj+S

p
2m−1
t

dxt

S2
≥

∫
R

S

p
2m−1
t

dxt

S3
≥ 0.

(10)

Equality S1 is true, because Ri is an integral constraint by
Lemma 2.3. By Lemma 2.5 and (9), PjQj ≥ 0 is true under
the log-concave condition, so inequality S2 is true under the
log-concave condition. Finally, inequality S3 is true, because
S ≥ 0 is an SOS.

C. Proof of Lemma 2.1
Costa [11] proved the following basic properties

dpt
dt = 1

2
∇2pt

dH(Xt)

dt = − 1
2
E[∇2 log pt] =

1
2

∫
Rn

∥∇pt∥2
pt

dxt =
1
2
J(Xt),

(11)

where ∇2pt =
n∑

i=1

∂2pt
∂2xi,t

and J(Xt) ≜ E
(

∥∇pt∥2

p2t

)
is the Fisher

information [6]. pt satisfies the heat equation by equation (11).
For s = 1, Lemma 2.1 was proved in [18]:
Lemma 2.8 ( [18]): For m ∈ Nm>1, we have

(−1)m+1(dm/dmt)H(Xt) =

∫
Rn

E1,m,n/p
2m−1
t (xt)dxt, (12)

where E1,m,n = p2m−1
t [(−1)m+1 1

2
dm−1

dm−1t
(
∥∇pt∥2

pt
) =∑n

a1=1 · · ·
∑n

am=1 E1,m,n,am is a 2mth-order differential
form in R[Pm,n].

To prove Lemma 2.1 for s = 2, 3, we need to compute
(dm/dmt)H(XGt). Since XG ∼ Nn(µ, σ

2I) and XGt ≜ XG+
Zt, XGt ∼ Nn(µ, (σ

2+t)I) and the probability density of XGt

is p̂t =
1

(2π(σ2+t))n/2 exp(− 1
2(σ2+t)∥xt − µ∥2).
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Lemma 2.9 ( [19]): Let T = ∇2logpt and TG = ∇2logp̂t.
Then under the log-concave condition, we have

E[(−T )m]
(a)

≥ [E(−T )]m
(b)

≥ [E(−TG)]m

(c)
= (−1)m+1 2nm−1

(m−1)!
(dm/dmt)H(XGt).

(13)

Lemma 2.10 ( [19]): For T = ∇2logpt and m ∈ Nm>1, we
have

E[(−T )m] =

∫ n

R

E0,m,n

p2m−1
t

dxt (14)

where E0,m,n =
∑n

a1=1 · · ·
∑n

am=1 E0,m,n,am , am = (a1, . . . , am),
and E0,m,n,am is a 2mth-order differential form in R[Pm,n].

We can now prove Lemma 2.1 for s = 2, 3. Let

E2,m,n = E1,m,n − (m−1)!

2nm−1 E0,m,n

E3,m,n = E1,m,n − (m−1)!
2nm E0,m,n

(15)

where E1,m,n and E0,m,n are from Lemmas 2.8 and 2.10. By
Lemma 2.9, Cs(m,n) is true if

∫ n

R
Es,m,n

p2m−1
t

dxt ≥ 0 for s = 2, 3.
Together with Lemma 2.8, Lemma 2.1 is proved.

From Lemma 2.9, we can prove C2(1, n), that is
Theorem 2.11: Subject to Var(Xt) = (σ2 + t) × I ,

(−1)n+1 d
dtH(Xt) achieves the minimum when Xt is Gaussian

with variance (σ2 + t)× I for t > 0 and n ≥ 1.
Proof: Among distributions with a fixed variance (σ2 +

t) × I , we have (d/dt)H(Xt)
(11)
= 1

2E(−T )
(13)
≥ 1

2E(−TG)
(11)
=

(d/dt)H(XGt), and the theorem is proved.

D. Proof of Lemma 2.5
A symmetric matrix M ∈ Rn×n is called negative semidef-

inite and is denoted as M ⪯ 0, if all its eigenvalues are
nonpositive. From [20], pt is log-concave if and only if for
all x ∈ Rn and t > 0, L(pt) in (5) is negative semidefinite. By
the knowledge of linear algebra, L(pt) ⪯ 0 if and only if

(−1)k△k,l ≥ 0 for 1 ≤ k ≤ n, 1 ≤ l ≤
(n
k

)
(16)

where △k,l is a kth-order principle minors of L(pt). Note that
elements of L(pt) are quadratic differential forms in R[Pn].
Then (−1)k△k,l is a kth-order log-concave constraint. As a
consequence,

∏s
i=1(−1)ki△ki,liQk1,...,ks is an mth-order log-

concave constraint, if Qk1,...,ks ∈ SpanR(M2m−2
∑s

i=1 ki,n)
and Qk1,...,ks

⪰ 0. This proves Lemma 2.5. And an illustrative
example has been presented in [19].

E. Procedure 2.6

The inputs: Es,m,n and Ri, i = 1, . . . , N1 are 2mth-order
differential forms in R[Pn]; Pj , j = 1, . . . , N2 are 2kj th-order
differential forms in R[Pn].

The outputs: ei ∈ R and Qj ∈ SpanR(M2(m−kj),n) such
that (8) and (9) are true; or fail meaning that such ei and Qj

are not found.
S1. Treat the monomials in Mm,n as new variables ml, l =

1, . . . , Nm,n, which are all the monomials in R[Pn] with degree
m and total order m. We call mlms a quadratic monomial.

S2. Write monomials in Cm,n = {Ri, i = 1, . . . , N1} as
quadratic monomials if possible. Doing Gaussian elimination
to Cm,n by treating the monomials as bases and according to
a monomial order such that a quadratic monomial is less than
a non-quadratic monomial, we obtain

C̃m,n = Cm,n,1 ∪ Cm,n,2,

where Cm,n,1 is the set of quadratic forms in mi, Cm,n,2 is the
set of non-quadratic forms, and SpanR(Cm,n) = SpanR(C̃m,n).

S3. There may exist intrinsic constraints. For instance, for
m1 = p2t (

∂2pt

∂2x1,t
)2, m2 = pt(

∂pt

∂x1,t
)2 ∂2pt

∂2x1,t
, and m3 = ( ∂pt

∂x1,t
)4

in M4,n, an intrinsic constraint is m1m3 −m2
2 = 0. Add the

intrinsic constraints which are quadratic forms in mi to Cm,n,1,
we obtain

Ĉm,n,1 = {R̂i, i = 1, . . . , N3}.

S4. Let M2(m−kj),n = {mj,k, k = 1, . . . , Vj} and Qj =∑Vj

k=1 qj,kmj,k, where qj,k ∈ R are variables to be found
later. Let Rj be obtained from PjQj by writing monomials
in PjQj as quadratic monomials in mi and eliminating the
non-quadratic monomials with Cm,n,2, such that Rj −PjQj ∈
SpanR(Cm,n) and Rj =

∑Vj

l=1 qj,lhj,l, where hj,l ∈ R[mi,Pn].
If hj,l is not a quadratic form in mi for some l, then set
Rj = 0 and still denote these constraints as Ĉm,n = {Rj , j =
1, . . . , N2}.

S5. Let Ês,m,n be obtained from Es,m,n by eliminating
the non-quadratic monomials using Cm,n,2 such that Es,m,n −
Ês,m,n ∈ SpanR(Cm,n,2) ⊂ SpanR(Cm,n).

S6. Since Ês,m,n, R̂i, i = 1, . . . , N3 and Rj , j = 1, . . . , N2
are quadratic forms in mi, we can use the Matlab software
given in Appendix A of [19] to compute pi, qj,s ∈ R s.t.

Ês,m,n −
∑N3

i=1 piR̂i −
∑N2

j=1 Rj = S, (17)

Rj =
∑Vj

l=1 qj,lhj,l, j = 1, . . . , N2

Qj =
∑Vj

l=1 qj,lmj,l ≥ 0, j = 1, . . . , N2 (18)

where S =
∑Nm,n

i=1 ci(
∑Nm,n

j=i eijmj)
2 is an SOS, ci, eij ∈ R

and ci ≥ 0. If (17) and (18) cannot be found, return fail.
S7. Since R̂i, Es,m,n − Ês,m,n, Rj − PjQj are all in

SpanR(Cm,n), equations (8) and (9) can be obtained from (17)
and (18), respectively.

III. PROOF OF C2(2, n)

We prove C2(2, n) using the procedure given in section II-B.
Theorem 3.1: Subject to V ar(Xt) = (σ2 + t)× I , Gaussian

Xt with variance (σ2 + t) × I achieves the minimum of
(−1)n+1 d2

d2tH(Xt) for t > 0 and n ≥ 1.
When m = 2, (13) holds without log-concave condition.

Thus, in this case, the log-concave conditions are not needed,
we set Qj = 0 in (8).
A. Compute E2,2,n

In step 1, we compute E2,2,n with (15):

−
d2H(Xt)

d2t
−

1

2n
E(

∥∇pt∥2 − pt∇2pt

p2t
)2 =

∫
E2,2,n

p3t
dxt (19)

where

E2,2,n = − d
dt (

∥∇pt∥2
2pt

)− 1
2n

(∥∇pt∥2−pt∇pt)
2

p3t
= − 1

2
p2t∇pt · ∇(∇2pt) +

1
4
pt∥∇pt∥2∇2pt

− 1
2n

(∥∇pt∥2 − pt∇2pt)2

=
n∑

a=1

n∑
b=1

(T1,a,b − 1
2n

T2,a,b), and

T1,a,b = − 1
2
p2t

∂pt
∂xa,t

∂3pt
∂xa,t∂2xb,t

+ 1
4
pt(

∂pt
∂xa,t

)2 ∂2pt
∂2xb,t

T2,a,b = (( ∂pt
∂xa,t

)2 − pt
∂2pt

∂2xa,t
)(( ∂pt

∂xb,t
)2 − pt

∂2pt
∂2xb,t

)

(20)
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B. The second order constraints
In step 2, we compute the second order integral constraints.

Due to the summation structure of E2,2,n in (20), we introduce
the following notations

Va,b = {
∂hpt

∂h1xa,t∂h2xb,t
: h = h1 + h2 ∈ [3]0} (21)

where a, b are variables taking values in [n]. Then P2,n =
∪n
a=1∪n

b=1 Va,b. The second order integral constraints are [19]:

C2,n = {R(2)
i,a,b, R

(0)
j : i = 1, . . . , 17; j = 1, 2; a, b ∈ [n]}. (22)

C. Prove C2(2, n)

In step 3, we use Procedure 2.6 to prove C2(2, n) with E2,2,n
and C2,n in (22) as input. It suffices to write

E2,2,n −
∑

R∈C2,n

cRR = S ≥ 0 (23)

where cR ∈ R and S is an SOS. From (23), a proof for
C2(2, n) can be given based on Theorem 2.7. Since C2(2, 1)
was proved in [13], [17], we will consider C2(2, n), n ≥ 2.
Due to the parameters a and b, the problem cannot be proved
directly with Procedure 2.6. We will reduce the problem to a
“finite" problem which can be solved with Procedure 2.6.

From (19) and (22), to prove (23), it suffices to solve
Problem I. There exist c1, c2 ∈ R and an SOS S such that

Ẽ2,2,n =
n∑

a=1

n∑
b=1

(T1,a,b − 1
2n

T2,a,b + c1R
(0)
1,a,b + c2R

(0)
2,a,b) = S

under the constraints R
(2)
i,a,b, i = 1, . . . , 17 given in (22).

Motivated by symmetric functions, for any function f(a, b),
n∑

a,b=1

f(a, b) =
n∑

1≤a<b

{
1

n−1 [f(a, a) + f(b, b)] + [f(a, b) + f(b, a)]
}
.

(24)
By (24), we have

Ẽ2,2,n =
n∑

a=1

n∑
b=1

(T1,a,b − 1
2nT2,a,b + c1R

(0)
1,a,b + c2R

(0)
2,a,b)

=
∑
a<b

[
1

n−1 (T1,a,a + T1,b,b − 1
2n (T2,a,a + T2,b,b) + c1(R

(0)
1,a,a + R

(0)
1,b,b)

+c2(R
(0)
2,a,a + R

(0)
2,b,b)) + T1,a,b + T1,b,a − 1

2n (T2,a,b + T2,b,a)

+c1(R
(0)
1,a,b + R

(0)
1,b,a) + c2(R

(0)
2,a,b + R

(0)
2,b,a)

]
=

∑
a<b

{
1

n−1 [(T1,a,a + T1,b,b) − 1
2 (T2,a,a + T2,b,b) + c1(R

(0)
1,a,a + R

(0)
1,b,b)

+c2(R
(0)
2,a,a + R

(0)
2,b,b)] +

1
2n [(T2,a,a + T2,b,b) − (T2,a,b + T2,b,a)]

+[(T1,a,b + T1,b,a) + c1(R
(0)
1,a,b + R

(0)
1,b,a) + c2(R

(0)
2,a,b + R

(0)
2,b,a)]

}
=

∑
1≤a<b≤n

(
1

n−1L1,a,b + 1
2nL2,a,b + L3,a,b

)
,

where
L1,a,b = (T1,a,a + T1,b,b) − 1

2 (T2,a,a + T2,b,b)

+ c1(R
(0)
1,a,a + R

(0)
1,b,b) + c2(R

(0)
2,a,a + R

(0)
2,b,b),

L2,a,b = (T2,a,a + T2,b,b) − (T2,a,b + T2,b,a),

L3,a,b = (T1,a,b + T1,b,a) + c1(R
(0)
1,a,b + R

(0)
1,b,a) + c2(R

(0)
2,a,b + R

(0)
2,b,a).

To prove Problem I, it suffices to prove
Problem II. There exist c1, c2 ∈ R and SOSs S1, S2, S3 such
that L1,a,b = S1, L2,a,b = S2, L3,a,b = S3 under the constraints
R

(2)
i,a,b, i = 1, . . . , 17.
In Problem II, the subscripts a and b are fixed and

we can prove Problem II using Procedure 2.6 with
L1,a,b, L2,a,b, L3,a,b and R

(2)
i,a,b, i = 1, . . . , 17 as input.

Step S1. The new variables are all the monomials in R[Va,b]
with degree 2 and total order 2 (Va,b is defined in (21)):

m1 =
(

∂pt(xt)
xa,t

)2
, m2 =

(
∂pt(xt)

xb,t

)2
, m3 =

∂pt(xt)
∂xa,t

∂pt(xt)
xb,t

,

m4 = pt(xt)
∂2pt(xt)

∂xa,t∂xb,t
, m5 = pt(xt)

∂2pt(xt)

∂2xa,t
, m6 = pt(xt)

∂2pt(xt)

∂2xb,t
.

Step S2. We obtain C2,n,1 = {R̂i, i = 1, . . . , 7} and C2,n,2 =

{R̃i, i = 1, . . . , 10} using Gaussian elimination, where

R̂1 = m1m6 − 2m2
3 + 2m3m4, R̂2 = −2m2m3 + m2m4 + 2m3m6,

R̂3 = −2m2
2 + 3m2m6, R̂4 = −2m1m3 + m1m4 + 2m3m5,

R̂5 = m2m5 − 2m2
3 + 2m3m4, R̂6 = −2m2m3 + 3m2m4,

R̂7 = −2m2
1 + 3m1m5.

R̃1 = p2
t

∂pt
∂xb,t

∂3pt
∂3xb,t

− m2m6 + m2
6, R̃2 = p2

t
∂pt

∂xa,t

∂3pt
∂3xa,t

− m1m5 + m2
5,

R̃3 = p2
t

∂pt
∂xa,t

∂3pt
∂xa,t∂

2xb,t
− m3m4 + m2

4,

R̃4 = p2
t

∂pt
∂xb,t

∂3pt
∂2xa,txb,t

− m3m4 + m2
4.

Here, R̃5, . . . , R̃10 are omitted, since they are not used in the
proof.

Step S3. There exists one intrinsic constraint: R̂8 = m1m2−
m2

3 and N3 = 8.
Step S4 is not needed, since there are no log-concave

constraints.
Step S5. Eliminating the non-quadratic monomials in L1,a,b,

L2,a,b, and L3,a,b using C2,n,2, and doing further reduction by
C2,n,1, we have

L̂1,a,b = L1,a,b + ( 1
2 − c1)R̃1 + ( 1

2 − c1)R̃2 − ( 1
4 + c2)R̂3 − ( 1

4 + c2)R̂7 = 0,

L̂2,a,b = L2,a,b − 2R̂1 + 1
2 R̂3 − 2R̂5 + 1

2 R̂7

= − 1
2m1m5 − 1

2m2m6 + 6m2
3 − 8m3m4 + m2

5 − 2m5m6 + m2
6,

L̂3,a,b = L3,a,b + ( 1
2 − c1)R̃3 + ( 1

2 − c1)R̃4 + (c1 − c2 − 1
4 )R̂1

+(c1 − c2 − 1
4 )R̂5

= m2
3 − 2m3m4 + m2

4 + c1(−4m2
3 + 6m3m4 − 2m2

4 + 2m5m6)

which are quadratic forms in mi.
Step S6. We obtain the following SOS representation
L̂1,a,b = 0, L̂2,a,b =

8∑
k=1

pkR̂k + (m1 −m2 −m5 +m6)2,

L̂3,a,b = (m3 −m4)2,

(25)

where p1 = 1
2 , p2 = 1

2 , p3 = 2, p6 = −2, p7 = −2, c1 =
c2 = p4 = p5 = p8 = 0. So, Problem II is solved and thus
C2(2, n) is proved.

IV. PROOF OF C3(3, n) FOR n = 2, 3, 4 UNDER THE
LOG-CONCAVE CONDITION

We use the procedure in section II-B to prove C3(3, n) for
n = 2, 3, 4 under the log-concave condition.

A. Compute E3,3,n

In step 1, we compute E3,3,n in (3) and (15):

1

2

d2

dt2
(
∥∇pt∥2

pt
)−

1

n3
E(

∥∇pt∥2 − pt∇2pt

p2t
)3

(11)
=

∫
Rn

E3,3,n

p5t
dxt (26)

where E3,3,n =
∑n

a=1

∑n
b=1

∑n
c=1 E3,a,b,c and

E3,a,b,c =
p4t
4

∂3pt
∂xa,t∂

2xc,t

∂3pt
∂xa,t∂

2xb,t
− p3t

4
∂pt

∂xa,t

∂3pt
∂xa,t∂

2xb,t

∂2pt
∂2xc,t

+
p4t
4

∂pt
∂xa,t

∂5pt
∂xa,t∂

2xb,t∂
2xc,t

− p3t
4

∂pt
∂xa,t

∂3pt
∂xa,t∂

2xc,t

∂2pt
∂2xb,t

+
p2t
4

(
∂pt

∂xa,t

)2 ∂2pt
∂2xb,t

∂2pt
∂2xc,t

− p3t
8

(
∂pt

∂xa,t

)2 ∂4pt
∂2xb,t∂

2xc,t

− 1
n3 [(

∂pt
∂xa,t

)2 − pt(
∂2pt

∂2xa,t
)][(

∂pt
∂xb,t

)2

−pt(
∂2pt

∂2xb,t
)][(

∂pt
∂xc,t

)2 − pt(
∂2pt

∂2xc,t
)].
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B. Compute the third order constraints
Similar to (21), we introduce the notation

Va,b,c = {
∂hpt

∂h1xa,t∂h2xb,t∂h3xc,t
: h = h1 + h2 + h3 ∈ [5]0} (27)

where a, b, c are variables taking values in [n].
The third order integral constraints are [18]:

C3,n = {R(3)
i,a,b,c, : i = 1, . . . , 955; a, b, c ∈ [n]}. (28)

Note that we do not use all the third order constraints in [18].
From Lemma 2.5, we can compute the third order log-

concave constraints:
C3,2 = {R1 = −△1,1Q1,R2 = −△1,2Q2,R3 = △2,1Q3}, (29)

where Q1, Q2 ∈ SpanR(M4,2) and Q3 ∈ SpanR(M2,2). Note
that C3,2 does not contain all the log-concave constraints in
Lemma 2.5. The constraints C3,2 are enough for our purpose.

For n > 2, we need certain log-concave constraints in
a special form. Let ∇1pt = ( ∂pt

∂xa,t
, ∂pt

∂xb,t
, ∂pt

∂xc,t
), L1(pt) ≜

ptH1(pt)−∇T
1 pt∇1pt, where

H1(pt) =


∂2pt

∂2xa,t

∂2pt
∂xa,t∂xb,t

∂2pt
∂xa,t∂xc,t

∂2pt
∂xa,t∂xb,t

∂2pt
∂2xb,t

∂2pt
∂xb,t∂xc,t

∂2pt
∂xa,t∂xc,t

∂2pt
∂xb,t∂xc,t

∂2pt
∂2xc,t

 ,

and △′
k,l, l = 1, . . . , Lk the kth-order principle minors of

L1(pt). Let M′
k be the set of all monomials in Va,b,c (defined

in (27)) which have degree k and total order k. We have
C3,n = {−△′

1,1Q1,1,−△′
1,2Q1,2,−△′

1,3Q1,3,
△′

2,1Q2,1,△′
2,2Q2,2,△′

2,3Q2,3,−△′
3,1Q3,1} (30)

where Q1,i ∈ SpanR(M
′
4), Q2,j ∈ SpanR(M

′
2), and Q3,1 ∈ R.

C. Proof of C3(3, 2)

The proof follows Procedure 2.6 with E3,3,2 given in (26)
and the constraints in (28) and (29) as input.

In Step S1, the new variables are M3,2 and are listed in the
lexicographical monomial order [19].

In Step S2, the constraints are C3,2 = {R(3)
j,a,b,c : j =

1, . . . , 955; a, b, c ∈ [2]}. Removing the repeated ones, we have
N1 = 135. We obtain C3,2,1 and C3,2,2 which contain 48 and
52 constraints, respectively.

In Step S3, there exist 15 intrinsic constraints [19]. Thus,
Ĉ3,2,1 contains 63 constraints and N3 = 63.

In Step S4, we obtain Ĉ(3, 2) which contains 3 quadratic
form constraints.

In Step S5, eliminating the non-quadratic monomials in
E3,3,2 using C3,2,2 to obtain a quadratic form in mi and then
simplifying the quadratic form using C3,2,1, we get Ê3,3,2 [19].

In Step S6, using the Matlab software in Appendix A of
[19] with Ê3,3,2, Ĉ3,2,1 and Ĉ3,2 as input, we find an SOS
representation for Ê3,3,2. Thus, C3(3, 2) is proved under the
log-concave condition. The program to prove C3(3, 2) can be
found in https://github.com/cmyuanmmrc/codeforepi/.

Remark 4.1: We fail to prove C2(3, 2) even under the log-
concave condition using the above procedure. Specifically,
we cannot find an SOS representation for Ê2,3,2 in Step
S6. Since the SDP algorithm is not complete for problem
(17), we cannot say that an SOS representation does not
exist for Ê2,3,2. The program for C2(3, 2) can be found in
https://github.com/cmyuanmmrc/codeforepi/.

D. Proof of C3(3, 3) and C3(3, 4)

In this subsection, we prove C3(3, 3), C3(3, 4). Motivated by
symmetric functions, we obtain

E3,3,n =
∑n

a=1

∑n
b=1

∑n
c=1 E3,a,b,c =

n∑
1≤a<b<c≤n

J3,3,n,

where
J3,3,n=

2
(n−1)(n−2)

[E3,a,a,a + E3,b,b,b + E3,c,c,c] +
1

n−2 [E3,a,a,b

+ E3,a,b,a + E3,b,a,a + E3,a,a,c + E3,a,c,a + E3,c,a,a + E3,b,b,a

+ E3,b,a,b + E3,a,b,b + E3,b,b,c + E3,b,c,b + E3,c,b,b + E3,c,c,a

+ E3,c,a,c + E3,a,c,c + E3,c,c,b + E3,c,b,c + E3,b,c,c] + [E3,a,b,c

+ E3,a,c,b + E3,b,a,c + E3,b,c,a + E3,c,a,b + E3,c,b,a].
(31)

From (31), if we prove J3,3,n ≥ 0, then E3,3,n ≥ 0. It is clear
that J3,3,n has much fewer terms than E3,3,n.

In J3,3,n given in (31) and the constraints in (28) and (30), we
may consider ∂

∂xa,t
, ∂
∂xb,t

, and ∂
∂xc,t

as the differential operators
without giving concrete values to a, b, c.

First, we prove of C3(3, 3) using Procedure 2.6 with J3,3,3
given in (31) and the constraints in (28) and (30) as the input.

In Step S1, the new variables are M′
3 = {mi, i = 1, . . . , 38}

which is the set of all monomials in R[Va,b,c] with degree 3
and total order 3.

In Step S2, the constraints are: C3,n = {R(3)
i,a,b,c : i =

1, . . . , 955}, N1 = 955. We obtain C3,n,1 and C3,n,2, which
contain 350 and 328 constraints, respectively.

In Step S3, there exist 189 intrinsic constraints. In total,
Ĉ3,n,1 contains 539 constraints. Using R-Gaussian elimination
in SpanR(Ĉ3,n,1) shows that 512 of these 539 constraints are
linearly independent, so N3 = 512.

In Step S4, we obtain Ĉ3,n from C3,n which contains 6
constraints.

In Step S5, eliminating the non-quadratic monomials in
J3,3,3 using C3,n,2 and then simplify the expression using
C3,n,1, we obtain Ĵ3,3,3.

In Step S6, using the Matlab software in Appendix
A of [19] with Ĵ3,3,3, Ĉ3,n,1 and Ĉ3,n as input, we
find an SOS representation for Ĵ3,3,3. Thus, C3(3, 3) is
proved. The program to prove C3(3, 3) can be found in
https://github.com/cmyuanmmrc/codeforepi/.

To prove C3(3, 4), we just need to replace the
input from J3,3,3 to J3,3,4 in the Step S5 in the
above procedure. In the same way, C3(3, 4) can be
proved. The program to prove C3(3, 4) can be found in
https://github.com/cmyuanmmrc/codeforepi/.

V. CONCLUSION

In this paper, the lower bound for the derivatives of H(Xt)
are considered. We first consider a conjecture C2(m,n) of
McKean in the multivariate case. We propose a general proce-
dure to prove inequities similar to C2(m,n). Using the proce-
dure, we prove C2(1, n), C2(2, n) (new result) and notice that
C2(m,n) cannot be proved for m > 2 and n > 1 with the pro-
cedure, which motivates us to propose the a weaker conjecture
C3(m,n). Using our procedure, we prove C3(3, 2), C3(3, 3),
and C3(3, 4) under the log-concave condition.
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